
COMMODITY SOFTWARE SOLUTIONS

The software development process

A personal view
Dr Robert Brady
Founder and non-executive director, Brady plc

Software development process

References
• “Debugging the Development Process”

• Steve Maguire, Microsoft Press
• Real disaster stories
• Inspirational and rational solutions
• Recommended template, unashamedly plagiarised here

• Big Blues: The Unmaking of IBM
• Paul Carroll, Three Rivers Press
• Journalist on how IBM couldn’t write software (and Microsoft

worked out how to – sort of – at critical time of s/w change)
• “Showstopper!”

• G Pascal Zachary, Macmillan
• Fly on the wall for the first release of Windows NT

• Google Chrome development cartoon
• http://www.google.com/googlebooks/chrome/index.html

Agenda

• The three most important things
1. Bugs
2. Bugs
3. Bugs

• Why is software development hard?
• Managing the code
• Development team ground-rules
• Making the management decision to ship

COMMODITY SOFTWARE SOLUTIONS

Why is software development hard?

History

• According to “Big Blues: the Unmaking of IBM”:-
• In the late 1980’s, IBM lost $70 billion of stock value
• and gave an entire market away to a small company
• Mainly because it couldn’t write software effectively.

• But IBM “did it right”. It followed all the standard rules
taught in computer science courses at the time:
• Get the design right before you write the code
• Write complete documentation
• Get it right first time
• Use formal methods, design walk-throughs etc. to satisfy

yourself that the code is bug-free, before release
• Regard other methods (eg Microsoft’s) as “hacking”

• So what went wrong?

Size is important

• 0.1-1kb Typical punch-card program
The IBM development method was
probably developed for this type of program

• 2kb-10kb Typical software module/class
Typical computer science project(?)

• 16kb Operating system of Sinclair Spectrum
• 200kb Our first software product – 1986
• 18 Mb Human Genome – active code

(30k genes * protein size 800)
Number varies from year to year

• 200Mb Our current software product
• 750Mb Human genome - including rubbish code

(3 x 109 base-pairs)
• 4Gb Windows Vista and associated products
• 218Gb Storage on my laptop

Software development process

 Punch-card
program

2kb of code Large program

Complete the design
in advance

Almost
essential

Difficult Too complex -
not possible

Complete the
documentation in
advance

Highly
desirable

Difficult Too complex -
not possible

Prove it is bug-free Very difficult
mathematical
challenge

Too complex -
not possible

Too complex -
not possible

“Right first time” A worthy goal Too complex -
not possible

Too complex -
not possible

How size affects the basic assumptions

IBM: Seminal measurements 1984

105 Years mean time to failure (log scale) 10 days

Number of
bugs (log
scale)
UNSCALED

Adams E. N., Optimising
preventive maintenance of
software products, lBM
Journal of Research &
Development, Vol. 28,
issue 1 pp 2–14 (1984)

Bugs in unnamed mainframe
operating system

IBM: Seminal measurements 1984

105 Years mean time to failure (log scale) 10 days

Number of
bugs (log
scale)
UNSCALED

Adams E. N., Optimising
preventive maintenance of
software products, lBM
Journal of Research &
Development, Vol. 28,
issue 1 pp 2–14 (1984)

Bugs in unnamed mainframe
operating system

Period Average bugs MTTF
10-20d 15d 1 15d

IBM: Seminal measurements 1984

105 Years mean time to failure (log scale) 10 days

Number of
bugs (log
scale)
UNSCALED

Adams E. N., Optimising
preventive maintenance of
software products, lBM
Journal of Research &
Development, Vol. 28,
issue 1 pp 2–14 (1984)

Bugs in unnamed mainframe
operating system

Period Average bugs MTTF
10-20d 15d 1 15d
20-40d 30d 2 15d

IBM: Seminal measurements 1984

105 Years mean time to failure (log scale) 10 days

Number of
bugs (log
scale)
UNSCALED

Adams E. N., Optimising
preventive maintenance of
software products, lBM
Journal of Research &
Development, Vol. 28,
issue 1 pp 2–14 (1984)

Bugs in unnamed mainframe
operating system

Period Average bugs MTTF
10-20d 15d 1 15d
20-40d 30d 2 15d
40-80d 60d 4 15d

IBM: Seminal measurements 1984

105 Years mean time to failure (log scale) 10 days

Number of
bugs (log
scale)
UNSCALED

Adams E. N., Optimising
preventive maintenance of
software products, lBM
Journal of Research &
Development, Vol. 28,
issue 1 pp 2–14 (1984)

Bugs in unnamed mainframe
operating system

Period Average bugs MTTF
10-20d 15d 1 15d
20-40d 30d 2 15d
40-80d 60d 4 15d
80-160 120d 8 15d

IBM: Seminal measurements 1984

105 Years mean time to failure (log scale) 10 days

Number of
bugs (log
scale)
UNSCALED

Adams E. N., Optimising
preventive maintenance of
software products, lBM
Journal of Research &
Development, Vol. 28,
issue 1 pp 2–14 (1984)

• Now known to be a key signature of
chaotic systems

• Most bugs actually triggered in real
life have very long MTTF

• (understandably, customers who are
affected don’t see it that way)

• Long MTTF = very hard to find

Bugs in unnamed mainframe
operating system

COMMODITY SOFTWARE SOLUTIONS

Managing the code

Waterfall Model

Design

Deploy

Code

Test

• Mainstay of development process
• Good for small modules or sub-

units, particularly if you can have
simple and well-specified interface.

• Be careful
• Different people for each stage

= lost information = failure
• Microsoft at one stage: “We

don’t have programmers, we
have developers”

Prototyping model

• Good where there are significant
project risks or unknowns
• e.g. external software, new

techniques or methods, or can’t
decide between alternatives

• Not very predictable
• a big problem in contracted

developments

“Playcode” it

Amend or reject it

Test and deploy it

Review it

Evolutionary model

Waterfall
model

changes

Prototyping
model

changes

Small Bug-
fixes

Integration;
manual and
automated

tests

Review for
release

Deploy

• Version control
system

• Everyone does
this in practice

• Manages
complex
interactions
between
developments

COMMODITY SOFTWARE SOLUTIONS

Development team ground-rules

An interactive quiz
Please don’t peek ahead!

Your starter for 10

• You are the manager of a small (2 person)
software development/test team
• David the Developer
• Terry the Test Engineer

• They come to you with a problem and a
proposed solution.

• Do you approve it?

Your starter for 10

• Problem
• We need to implement 10 features. We have reviewed the

designs, we now need to code and test them.
• Time is very tight. We will have to pull out all the stops to do

it by the contracted deadline of next month
• David is the best person to do development
• Terry is the best person to do the testing

• Proposed solution
• David and Terry work closely together to accelerate the

development phase
• David develops the features and makes quick releases to

Terry during development
• Terry provides testing feedback during this phase
• After this development phase, the software will go into the

normal release cycle for testing/bugfix
• Do you approve?

If you approve the plan

• You will send a message to your developers that bugs
don’t matter – you can “throw them over the wall” and
someone else will find them for you

• You will accelerate developers who produce sloppy code
and slow down developers who produce good code

• The process will be inefficient, eg
• David will rely on Terry, so won’t run ‘white box’ tests
• Silly bugs will stop Terry running his automated tests
• Constant communication will slow the team down

• When you get to the original deadline
• your project will have all the features, but too many bugs
• You won’t be able to advise the customer of the new ship

date, because the automated tests don’t work - and they
always uncover something new when they do run

• It will be too late to take corrective action

If you reject the plan

“Developer has to test his code before release”
• The team will be forced to make the hard project

decisions, eg
• Go back to the design stage for feature number 3; can we

implement it more simply?
• Cut feature number 6 – it’s not strictly in the specification
• Advise the customer there is a risk. Does he want a delay,

or does he want feature number 7 in a later release?
• Request more resources (a long shot…)

• Your team will work more efficiently
• Terry will always work on code that is basically stable (so he

can develop his regression tests etc.)
• David will be rewarded for producing quality code, not for

producing features that destabilise the product

If you reject the plan

Your team will be better able to plan the project
• If a feature is in the product then it will “basically

work”
• The team (and you) can now monitor progress
• You can get test results and customer feedback

early on the features you have implemented
• Management can make the decision to ship with a

more predictable freeze-time

My Damascus moment

• Conventional way to scale development team
• Tools, methodologies, targets
• ‘Typing pool’ model
• Not conducive to commitment, ownership, joy

• Feature teams – eg SCRUM
• Small teams of 3 -6
• Everyone fully involved & responsible for all

decisions in functional area
• Post-it notes to advertise work planned, in

progress, ready, tested
• WORKS WITH OUTSOURCING TO RUSSIA

COMMODITY SOFTWARE SOLUTIONS

Making the management decision to ship

Recognising the trade-off

Handbook of software
quality engineering

How many bugs when you release?

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Number of bugs when released

To
ta

l c
os

t

Loss of reputation etc.
Cost of reaching quality target before release
Total cost

Metrics: NT version 1

• 5.6M lines of code
• 1 bug for every 100 lines = 56K bugs to fix
• 1 bug for every 10 lines = 560K bugs to fix
• 1 bug per line (some academic industry estimates) = 5.6M bugs to fix

• Management’s major activity: prioritising bugs
• Showstopper (always fixed)
• Priority 1 (fixed except in late stages of release)
• Priority 2 (deferred)

Date Release Serious or showstopper bugs
12 Oct 1992 Beta 1 2,000 known on release

8 Mar 1993 Beta 2
0 known on release
263 found in first 6 days

26 Jul 1993 Final 0 showstoppers known on release

My personal view

• Avoid the “first release” syndrome altogether if poss
• Make the first release very small
• Make regular upgrades (SP or beta versions)
• Typically monthly or quarterly releases
• Each release contains only small changes

• Essential to limit risks OF EACH RELEASE
• Invest in automated regression tests
• The risk of each change is the primary focus
• Manage higher risk changes by breaking them up

• eg Have the ability to switch the risky part on/off
• eg implement a big change in smaller bits

• Get real customers for each release
• Forces focus on what the customer really requires
• Gets real-world feedback that no lab can reproduce

• Problems? Add to automated regression tests

Summary

• The three most important things
1. Bugs
2. Bugs
3. Bugs

• Why is software development hard?
• Managing the code
• Development team ground-rules
• Making the management decision to ship

Selling your company

• Typical acquisition size for us
• 10 years, 15 developers
• £2M-£12M

• My key question in due diligence (rough and
ready indicator): How many lines of code?
• 500,000 = functionality
• 3M = duplication nightmare
• Moral: Reduce code size in the first place
• Design for code re-use
• Refuse to code non-general features in

the product

COMMODITY SOFTWARE SOLUTIONS

The software development process

Thank you
www.bradyplc.com for summer internships

